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PROPERTIES OF A MAGNETIC DIPOLE

1. INTRODUCTION

Magnetic phenomena differ from electric phenomena since there are no
free magnetic charges or poles. The basic entity in magnetic phenomena is
thus the magnetic drprle - the magnetic ar.alogue of the electric dipole
consistlng of two :zcrsite charges placed very close together.

Bulk m~g.ctoc phenomena such as magnetization are generally
described in terms of accumulations of magnetic dipoles. However standard
works on electrcmaqnetosm (for example refs. 1-31)' usually describe only the
simple features of :he jipole without verifying all its properties. This
note explores the physical and mathematical properties of the classical
magnetic dipole. These properties enable the dipole to be considered as one
of the fundamental magnetostatic units.

2. THE VECTOR POTENTIAL A

The magnetic dipole can be described by an infinitesimally small
current loop such as shown in Fig. 1. To calculate the magnetic induction B
due to this current loop it is customary to first calculate the vector
potential A defined so that

B = V x A

The loop of radius a is oriented in tha x-y plane with its centre
at the origin of the rectangular cartesian coordinate system and the vector
potential is to be determined at a point P. For convenience a spherical
polar coordinate system is also used with its origin coincident with the
cartesian coordinate system (the point 0 in Fig.l). The following derivation
of A is similar to that given in standard texts [1-2] but is included here for
completeness. Due to the freedom of gauge transformations for the vector

. . .. . ... . . .... . .1



potential, V.A can be defined as zero (the so-called Coulomb gauge
condition). In this case the vector potential A at point P is given by the
volume integral

A = jo/4w f J(r')/(Ir-r') dV' (2)

where J is the current density, r is the radial vector defining the point P
and r' is the vector defining the points on the current loop over which the
integration is to be carried out. The current density J has a component only
in the o-direction

J = IS(coso')6(r'-a)/a (3)

and hence so has the vector potential. With no loss of generality and to
simplify the calculations the point P is chosen so that o = 0. Then only the
rectangular component Jy = J is retained. Now A is given by

A (r,o) = joI/4wa f r'2  dr'dgcoso'5(cose')6(r'-a)/( Ir-r I) (4)

where d2' = sino'do'do'. The integration is simplified by the two delta
functions: the current density has non-zero value only on the loop where
coso' = 0 and r' = a. When the integration is carried out over the two delta
functions the vector potential reduces to

0o~ [2w cos 'd '

A (r,o( = ,,a2 csIo (5)A 0 8 4w Jo 2 2 1/2 )
(a + r - 2arcoso'sino)

For points P where r>>a the denominator may be expanded in a Taylor
series as:

-1 2 2
Ir-r'lI = 1/ i + (a/r)sinocoso' + O(a /r ) + .... ] (6)

If this expression is substituted into equation (5) and terms of
second order and higher in (a/r) neglected, then the vector potential is given
by

SIa

A (r,o) 0 Or 2v cosO'[1+ (a/r)sinocos#' ]d#' (7)

2,Ia
0 r2w siso2

- 2 w sinecos 2'do', (8)
41r

-
--.
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2

sino,
2

4r

since 2wos 2 o'do' = , and coso'do' = 0.
0 o

2 Defining the dipole moment m to be a vector of magnitude
(wa )I normal to the plane of the current loop, A (r,o) can be written as

A (r,o) = - msino/r 2

0 4w

Hence the ,ector potential A can be expressed as a vector cross
product

A /4w m x r/r 3

since its only non-zero component (in the O-direction) is orthogonal to both
the directions of m and r and its magnitude is given by p /4w Iml Ir/r310
times the sine of the angle 0 between these two vectors.

Alternatively A can be expressed as:

A = - g /4w m x 7(1/r) (12)

since 7(1/r) = -r/r3  for r > 0.

if this expression for A is correct then it should satisfy the
Coulomb gauge condition assumed in its derivation. This follows readily since

7.A = # /4w 7.(m x r/r 3 ) (13)

= I /4, [(7 x m) . r/r 3  + m.(V x r/r 3)] = 0 (14)

because 7 x m vanishes as m is constant and the curl of the gradient of any
function vanishes identically (since r/r = -(/r)).
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3. COMPONENTS OF MAGNETIC INDUCTION B

The magnetic induction B due to a magnetic dipole located at the

origin can be derived from the relationship

B = 7 x A (:5)

If the result obtained in section 2 for the vector potential A is
substituted, the magnetic induction at a point r away from the current source

is given by:

B = /4v V x (m x r/r
3)

which can be expanded to

B 0t /4w [(r/r 3 .V)m - (v.m)r/r3 + m(v.r/r3) - (m.v)r/r3]

The first two terms are identically zero since m is constant. :he third term
is also zero since for any integer n and for r > 0 [4]

7.(rnr) = rn(n+3)

:h7s the only remaining term is

B = - 0o/4, (m.v)r/r
3

This expression can be simplified by considering the vector

:dentlty:

(u v)0 v = (Uv7)v + O(uv)v (20)

where U and V are arbitrary differentiable vector functions and 0 is an
arbitrary differentiable scalar function. Equation (19) then becomes

31

B [(m-V(1/r 3)r + - (m-V)r] (21)

- [3(m.r)r/r5 + m/r3 ]  (22)

4w
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because V(I/r = - 3r/r 5 and (m.V)r =m. Thus (22) can be written as

i o5
B - [3(m-r)r/r5 - m/r 3 ]  (23)

4V

In spherical polar coordinates with the origin situated at the location of the
dipole the components of B can be found from (23) by Br = r- B and B0 = 0 B
where r and 0 are unit vectors in the radial and zenithal (0) directions
respectively (ref. to Fig. 1). There is no component in the
azimuthal (o) direction since ;- B = 0. The two non-zero components may be
readily obtained as:

B # /4r [2mcoso/r] (24)

B = 0 /41 [msino/cl (25)0 0

from the above discussion.

4. DIVERGENCE OF THE MAGNETIC INDUCTION

The expression (23) for B was derived from the curl of the vector
potential A. Hence B is automatically divergenceless since the divergence of
the curl of any vector is zero [41. However, it is of interest to explicity
verify that the deduced expression for B is divergenceless. The divergence of
the magnetic induction due to a magnetic dipole is given by

7-B = - V.[3(m.r)r/r5 - m/r ]  (26)
4w

The divergence of both terms inside the bracket can be calculated
from the vector identity [4]

7(#V) = V#.V + #7.V (27)

where * and V are defined as in section 3. Now the first term may be expanded
to

7.(m.r)r/r5  = m.r/r5  + (m.r)(v.r/r5 ) (28)

-m.r/r5  (29)
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since V(m.r) = m and V.(r/r) = -2/r5 from equation (18). The divergence of
the second term in (26) reduces to

7.(m/r 3) V(1/r 3 ).m + i/r3(v.m) ()

-3m.r/r
5

since V(1/r 3 ) = -3r/r 5 and m is a constant. Combining these results the
divergence of B becomes

A05 5
V.B = - [-3m.r/r + 3m.r/r ] (32)

4w

- 0,

so that B is a solenoidal vector field and thus obeys the fundamental law of
magnetostatics.

5. THE CURL OF THE MAGNETIC INDUCTION

From Maxwell's laws V x B = go J assuming steady-state conditions.
Hence V x B = 0 in the region excluding the dipole source. Adapting the same
philosophy as in section 4 this result is explicity verified for the specific
form of the dipole's magnetic induction B. The curl of the magnetic
induction can be written as

7 x B = - V x [3(m.r) r/r 5 
- m/r 3 ] (33)

4w

The curl of both terms can be calculated from the vector identity

V x (*v) = VO x V + J(v x v), (34)

where ' and V are as defined in section 3. The first term may be expanded as

5 ~ 55

3V x (m.r)r/r5 = 3[ 7(m.r) x r/r + (m.r) V x(r/r5 )) (35)

3 3[m x r/r5 1 (36)
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since 7(m.r) = m and 7 x (r/r5  0 identically [4]. The second term in
equation (33) becomes

-7 x (m/r 3) = - [7(!/r 3 ) x m + i/r 3 (7 x M)] (37)

3 2 r x m/r 5  
38)

5

since v(i/r 3 ) = -3r/r for r > 0 and V x m = 0. Combining these results the
curl of B becomes

V x B - [3(m x r)/r + 3(r x m)/r ] (39)4w

-0

Hence the magnetic induction vector B is irrotational as required.

6. SCALAR POTENTIAL OF MAGNETIC DIPOLE

7t has been shown that B is irrotational (i.e. V x B = 0) for a
magnetic dipole. Hence B can be written as the gradient of a scalar
field o.

B =- V (40)

Since I is also solenoidal (7yB = 0) the scalar potential satisfies
the Laplacian, 7 o = 0.

:he scalar cotential can be deduced from the alternative expression
fcr e vector potential A

A = - /4r m x V(I/r) (41)

Thus B = 7 x A can be expanded as
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B 0- m.V)7(l/r) - m .(7.7(i/r))] 342)
4w

- [(.7)7(l/r)], (43 )
4w

since 72 (/r) = 0 for r > 0.

Now using the vector identity [43

v(m.v(l/r)) (vi/r).7)m + (m.7)7(/r) +7(1/r) x (7 x m) +

m x(7 x 7(!/r)) 344)

it can be seen that

7(m.7(1/r)) = (m.7)7(1/r) 345)

since the other ter7s -n the right side vanish because m is constant ant
7 x 7(1/r) vanishes :enttoaily [43. :hUs B can be expressed as

B - [(m.7(1/r))f 4634 i

so that the scalar pctential o is given by

S- /4w m.7(i/r) 47)

it can be readily shown that this potential satisfies the Laplaclan
since

7 = -7.B = 0 48)

7. SUMMARY AND CONCLUSIONS

in this paper the magnetostatic properties of a magnetic dipole have
been verified. in summary it has been shown that the magnetic dipole has a
vector potential which is given by

8



A "m x r/'14W

-,1

A - (m x 7(I,/r) 50

an3 satisfLes the Cr'uImb qGauge condition

7.A = 0 (51)

The magnetlc induotion B was derived from the curl of the vector
ctentlal to -e

05 3
B =- [3(m.r)r/r - m/r (52)4w

It has also been explicitly verified that Maxwell's equat:ons hold
for the dipole field so that

7.B = 0 (53)

In t

7 x B = 0, 54

the region excluding the current source.

Further, it was shown that B can be expressed as the gradient of a
scalar potential defined by

- 0
* = -- m.7 (I/r) '5 5

4 i
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FIGURE I The magnetic dipole represented as a circular current loop with
both its rectangular cartesian and spherical polar coordinate
systems.
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